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Abstract
A Fourier optics calculation of image formation in low energy electron microscopy (LEEM) is
presented. The adaptation of the existing theory for transmission electron microscopy to the
treatment of LEEM and other forms of cathode lens electron microscopy is explained. The
calculation incorporates imaging errors that are caused by the objective lens (aberrations),
contrast aperture (diffraction), imperfect source characteristics, and voltage and current
instabilities. It is used to evaluate the appearance of image features that arise from phase objects
such as surface steps and amplitude objects that produce what is alternatively called amplitude,
reflectivity or diffraction contrast in LEEM. This formalism can be used after appropriate
modification to treat image formation in other emission microscopies. Implications for image
formation in the latest aberration-corrected instruments are also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Image formation in cathode lens electron microscopy is
primarily determined by the properties of the cathode objective
lens, although optical components after the objective lens,
such as beam separators and imaging electron filters, can
modify to some extent the primary image formed by the
cathode lens. Resolution and contrast are generally the two
most important aspects in imaging, while image acquisition
time can also be of importance in some imaging modes. In
the past, most of the attention has been given to calculating
resolution, usually using ray-optical methods. An exception is
the early wave-optical calculation of the resolution in emission
microscopy by Recknagel [1]. This approach produced results
that differed significantly from those of his earlier ray-optical
calculations. It is therefore desirable to perform wave-optical
calculations also for energies beyond the range of validity of
Recknagel’s assumptions, for example for the energy range
used in LEEM [2], and to calculate not only resolution but
also contrast in a consistent manner for two limiting contrast
mechanisms, pure phase contrast and pure amplitude contrast.
Pure phase contrast is realized in atomic steps on a clean single-
crystal surface. Pure amplitude contrast can occur on a flat
surface at the sharp boundary between materials or structures
with different reflection coefficients. Such a boundary is

commonly found when two different structures coexist in the
surface plane without an intervening step. It might also be
realized by decoration of atomic surface steps with a material
with different reflection coefficient consisting of atoms with the
same diameter as the substrate atoms. The field distortions in
front of such surfaces are minimal, which makes them ideal
test objects of resolution and contrast. Until now, only a
wave-optical model of step phase contrast in LEEM has been
discussed [3, 4]. Although it reproduces the key image features
that are observed experimentally, this model only treats the
wave interference phenomenon at a step in an accurate way.
It is not a complete calculation of image formation because the
properties of the objective lens and diffraction at the contrast
aperture were only included in a very ad hoc way. Therefore,
we use Fourier optics in this paper, which can account for these
effects rigorously.

2. Fourier optics of image formation

2.1. Elementary considerations

In the Fourier optics approach, the formation of the diffraction
pattern and image in the microscope (figure 1) are synonymous
with the Fourier transform of the wave that is emitted
from the object and its subsequent inverse Fourier transform,
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Figure 1. (Color online) Ray paths of emitted waves, ψres, that
produce the diffraction pattern and image. The dashed line is the path
of electrons that are accelerated in the objective lens to microscope
potential. F and F−1 are the Fourier and inverse Fourier transforms,
respectively.

respectively. Fourier optics treats the modifications of the ideal
emitted wavefront that are caused by several factors, including
source characteristics (source extension and energy spread)
that define beam coherence, the action of the electron-optical
elements (objective lens and contrast aperture) that produce a
magnified image, as well as voltage and current instabilities.
We outline below how the errors that are introduced by
these factors are expressed in the transform and inverse
transform [5]. This modeling follows the existing formalism
that is used to describe image formation in transmission
electron microscopy (TEM) [6–12]. However, one important
characteristic of LEEM and other cathode lens microscopies
that must be taken into account in this adaptation is that
electrons that are reflected or emitted (commonly referred to
as emitted in the following) from the sample, i.e. the real
object, are accelerated from low emission energy, U0, to the
microscope potential, U , in the objective lens. This creates
a virtual object plane behind the real object plane (figure 1)
at a distance, a, from the objective lens that is of the order
of the focal length, f , a � f . The virtual plane is absent in
TEM because such acceleration does not take place. Therefore,
the formulation of the Fourier optics calculation here refers to
the virtual rather than the real object in LEEM. The relation
between the virtual and real objects and the recovery of real
object information are discussed further in the appendix.

We begin by considering the illumination of a sample
by a uniform plane wave at normal incidence, ψill(r̄) = ψ0

exp(ik̄ · r̄) = ψ0 exp(ikz), where z is the position along
the optical axis of the illumination, ψ0 is the amplitude and
k = 2π/λ is the momentum wavevector. The wavelength
of the incident wave at the virtual object, λ, is equal to the
wavelength after acceleration from the real object. Upon
interaction with the sample, the incident wave is modified by
a position-dependent object function. In a one-dimensional
model of the object, the object function has the form ψobj(x) =
σ(x) exp(iφ(x)), where x is the lateral position in the virtual
object plane, and σ and φ are the amplitude and phase,
respectively. Features that cause a spatial variation of the
amplitude give rise to what is alternatively called amplitude,
reflectivity or diffraction contrast in LEEM. Features that cause
a spatial variation of the phase, such as surface steps in LEEM,
produce phase contrast.

The emitted wave is given by ψres(r̄) = ψill(r̄) · ψobj(x).
For a uniform illumination, the emitted wavefront in the virtual
object plane is equal to the object function multiplied by the
illumination,ψ0 exp(ikz). For convenience, we setψ0 = 1 and
z = 0 at the virtual object plane so that ψill(z = 0) = 1. The
influence of the illumination will be taken into account later in
section 2.3. The emitted wave can be expressed as a sum of
plane waves, exp(ik̄ f · r̄), where k f = k, which are emitted
from the virtual object at various angles θ with respect to the
optical axis (figure 1). The use of the set of plane waves that
are emitted from the virtual object to describe the wavefront
in the virtual object plane restricts the position vector to the
virtual object plane, r̄ = x̄ . Therefore, the plane waves can be
rewritten as exp(i 2π

λ
x sin θ) = exp(i2πqx), where the spatial

frequency is approximated as q = θ/λ for paraxial rays.
The paraxial ray approximation should be generally valid for
emission from the virtual object in cathode lens microscopy
using low energy electrons (U0 � U ). Equating the wavefront
in the virtual object plane with the object function, the plane
wave sum is written as

ψres(x) = ψobj(x) =
∫
ψ̃obj(q) exp(i 2πqx) dq,

with amplitudes that are given by the Fourier transform of the
object function:

ψ̃res(q) = ψ̃obj(q) = F[ψobj(x)]
=

∫
ψobj(x) exp(−i 2πqx) dx . (1)

Each plane wave is focused to a different point in the back focal
plane of the objective (figure 1). Therefore, the amplitudes
expressed by equation (1) also represent the diffraction pattern
that appears in the back focal plane. The wave that forms the
image in the image plane (figure 1) is given by the inverse
Fourier transform:

ψm(x) = F−1
M0

[ψ̃res(q)] = 1

M0

∫
ψ̃res(q) exp

(
i2πq

x

M0

)
dq,

(2)
where the factor 1/M0 takes into account the reduction of
the amplitude ψres and the change of length scale by the
magnification M0. Being a constant, we will take the
magnification to be 1 in the following for convenience. In
sections 2.2 and 2.3, we outline how numerous factors modify
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the ideal transforms expressed by equations (1) and (2). The
image intensity that is formulated using a modified form of
equation (2) is presented in section 2.4.

2.2. Diffraction error and wave aberrations

A contrast aperture in the back focal plane limits the range
of the emission angle that is used for image formation
(figure 1). The aperture produces diffraction that degrades
resolution [6–8]. This effect is modeled in Fourier optics by
including a multiplicative factor inside the integral expression
for the image wave, equation (2), of the form

M(q) =
{

1 for |q| < qmax

0 for |q| � qmax,
(3)

where qmax = αap/λ and αap is the maximum emission angle
permitted by the aperture. This angle is determined by the
radius of the aperture, rap, and the distance of the virtual
object from the objective lens, ∼rap/a. If the aperture is
physically positioned in a subsequent diffraction plane in the
microscope, then the appropriate magnification factor between
the two diffraction planes should be considered.

Wave aberrations refer to deviations of the wave path
from ideal (figure 2(a)). These deviations come from two
sources: focusing errors of wavefronts that follow trajectories
off the optical axis, referred to as spherical aberrations, and
deviations of the focal length or sample position from ideal
values, together referred to as defocus. These two errors are
considered together because they both produce optical path
length differences for off-axis waves (q > 0) compared to the
on-axis wave. This is equivalent to a q-dependent phase shift
that is given by [5–9]

W (q,	z) = 1
4

(
CSλ

3q4 − 2	zλq2
)
, (4)

where CS is the spherical aberration coefficient of the objective
lens and	z = 	 f −	a is the defocus with	 f and	a being
the deviations of focus and sample position, respectively, from
ideal values (figure 2(a)).

Together, the diffraction error and wave aberrations
introduce a multiplicative factor in the inverse transform,
equation (2), that is given by

H (q,	z) = M(q) exp(i2π W (q,	z)).

2.3. Beam coherence and stability

In a real instrument, instabilities of lens current and voltage and
imperfect source characteristics that diminish beam coherence
will introduce errors in image formation. We consider the
effect of two factors that define beam coherence, source
extension and energy spread. First of all, electrons are emitted
from a confined area on a cathode rather than from a point
source. Consequently, an electron that is emitted from a
position some distance away from the point on the optical axis
will be incident with a tilt angle, call it τ , at the sample. In
the Fourier analysis, the q-mode component of the emitted

Figure 2. (Color online) Deviations in ray path (solid lines) that are
caused by (a) spherical aberration (upper dashed lines) and defocus
(lower dashed lines) and (b) source extension (upper dashed lines)
and chromatic aberration (lower dashed lines) are shown. The
defocus error is caused by displacement of the object position, a, and
adjustment of the focal length, f , from ideal. The convention for
positive changes of these variables,	a and 	 f , is shown. The other
variables are defined in the text.

wave from this off-axis point source will be shifted by a
corresponding amount, t = τ/λ, from q to q + t compared
to the same mode that is produced by the on-axis point source
(figure 2(b)). The extended source can be described by a source
density with a Gaussian distribution [10, 11]

s (t) = 1√
πqill

exp

[
−

(
t

qill

)2
]
,

where qill = αill/λ and αill is related to the full width at
half-maximum of the angle subtended by the extended source
density when viewed from the on-axis point on the virtual
object. The final image will be calculated in section 2.4
by summing the contributions from all points on the cathode
weighted by the source density.

The energy spread of the electron beam also produces
errors during image formation because of chromatic aberration
of the lens. This refers to deviations of electron trajectories
from the nominal trajectory that are produced by the energy
dependence of the focal length (figure 2(b)). Chromatic
aberrations are included in the calculation by summing the
weighted contributions for the different energies within the
(assumed) Gaussian energy distribution of the source. The
Gaussian weighting function, called the defocus distribution,
has a width 	 fCE = CCE (	E/E), where CCE is the
chromatic aberration coefficient and 	E is the width of
the energy distribution about the nominal energy E [11].
Instabilities in the lens voltage and current also produce
fluctuations of the lens focal length. If these instabilities are
time-averaged, they have an effect on image formation that is
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analogous to that which is produced by energy spread [12].
Instabilities are therefore described by their respective defocus
distributions, assumed to be Gaussian. Energy spread and
instabilities are combined by convolution in the composite
defocus distribution [7, 8, 11]

c(	zc) = 1√
π	 fC

exp

[
−

(
	zc

	 fC

)2
]
, (5)

where 	zc is the defocus integration variable used in the
calculation of image intensity and 	 fC is the width of the
convolved defocus distribution. The width is given by

	 f 2
C = C2

CE

(
	E

E

)2

+ C2
CU

(
	U

U

)2

+ C2
CI

(
	I

I

)2

, (6)

where CCU and CCI are the respective chromatic aberration
coefficients for voltage and current instabilities, 	U and
	I are the widths of the time-averaged voltage and current
distributions about the nominal voltage and current, U and I ,
respectively, and E = U for the virtual object here.

2.4. Image formation

The image intensity is calculated as the product of the
wavefunction and its complex conjugate, I (x) = ψm(x) ·
ψ∗

m(x). The modifications of the inverse transform,
equation (2), due to the several factors that are described
in sections 2.2 and 2.3, are collected in a reflection cross-
coefficient, R(q, q ′,	z), in the expression for the intensity [6]

I (x) =
∫

q

∫
q ′
ψ̃res(q) · ψ̃∗

res(q
′) R(q, q ′,	z)

× exp(i 2π(q − q ′)x) dq dq ′.

Considering first only wave aberrations and diffraction error,
the reduced cross-coefficient is given by

R0(q, q ′,	z) = H (q,	z) H ∗(q ′,	z) = M(q)M∗(q ′)
× exp[i2π(W (q,	z)− W (q ′,	z))]. (7)

The reduced cross-coefficient must be integrated over the
source density and defocus distributions to obtain the complete
cross-coefficient that includes the effects of beam coherence
and instabilities:

R(q, q ′,	z) =
∫ ∫

s(t)c(	zc)R0(q + t, q ′ + t,	z +	zc)

× dt d	zc.

It is useful to simplify the cross-coefficient by expanding the
phase shift W (q + t,	z +	zc) in a Taylor series, keeping
only up to the first-order terms in the small quantities 	zc

and t [10, 11]. Assuming t � q, q ′ and approximating
M(q + t) ≈ M(q), we obtain the following expression:

R(q, q ′,	z) = R0(q, q ′,	z) Es(q, q ′,	z) Ec(q, q ′), (8)

where

Es(q, q ′,	z) = exp[−π2q2
ill(CSλ

3(q3 − q ′3)
− 	zλ(q − q ′))2], (9)

and
Ec(q, q ′) = exp[−π2	 f 2

Cλ
2(q2 − q ′2)2]. (10)

The physical meaning of the three factors that make up R
can be understood as follows. First, R0 contains M(q) and
exp(i2πW (q)), which are clearly the effects of diffraction
at the contrast aperture and wave aberrations, respectively.
The factor Es contains the product of the source extension
parameter, qill, and the partial derivative ∂W/∂q . This means
that source extension comes into play only through wave
aberrations of the objective lens. If the spherical aberration
coefficient and defocus are both zero, then source extension
has no effect. Therefore, we attribute Es to the effect of
source extension. It is also evident that the factor Ec is due
to chromatic aberrations associated with energy spread and
instabilities.

3. Results and discussion

We calculate image features here that are produced by pure
phase and pure amplitude objects. The spatial variations of
phase and amplitude that are caused by these objects are
represented by the abrupt step functions in the respective
variables that are shown in figure 3. A surface step is an
example of a pure phase object that causes a phase shift but
has no effect on the amplitude. The phase shift is given by φ =
kd = (2π/λ0)2a0, where d = 2a0 is the path length difference
between waves that are reflected from terraces on opposite
sides of a step, a0 is the step height and λ0 is the wavelength
of low energy electrons that are elastically backscattered from
the surface, i.e. the real object. For the reflection geometry
of LEEM, the positive phase shift at positive coordinates in
figure 3 represents the additional path length that a wave
travels to and from the terrace on the lower side of the step.
Conversely, a pure amplitude object produces a change of the
amplitude, but has no effect on the phase. Such a situation may
arise when two structures are present that produce different
diffraction intensities. We consider the extreme case that
the contrast of the object amplitude function is 100%. The
behavior of weaker amplitude objects is related trivially to the
case that is calculated. The behavior of mixed phase/amplitude
objects can also be calculated by the same methods.

3.1. Effect of cross-coefficient

In order to illustrate the influence of the various factors that are
included in the cross-coefficient, we plot the quantities related
to wave aberrations, exp[i2π(W (q,	z)− W (0,	z))], source
extension, Es(q, 0,	z), and chromatic aberration, Ec(q, 0), in
figure 4. These quantities are shown for in-focus and out-of-
focus conditions, where appropriate. Defocus is specified in
units of the reduced defocus, 	z∗ = 	z(CSλ)

−1/2, which is
defined in the appendix. The effects of these factors on image
formation are demonstrated in the calculated image intensity
profiles that are shown for in-focus and out-of-focus conditions
in figure 5. Lateral position in figure 5 is specified in terms
of the real object coordinate, x0. The parameters that are
used in the calculation and the relationships between the real
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Figure 3. The amplitude, σ , and phase, φ, components of the object function are shown for amplitude and π-phase objects.

Figure 4. (Color online) Factors that comprise the complete
reflection cross-coefficient (equation (8)) are plotted for in-focus
(	z∗ = 0, thick lines) and out-of-focus (	z∗ = 6, thin red lines)
conditions. In (a), the real (solid lines) and imaginary (dashed lines)
parts of the wave aberration function are shown. The gray shaded
region is blocked by the aperture function, M(q). The source
extension function is shown in (b). In (c), the chromatic aberration
function is shown for 	E = 0.5 eV and the aberration coefficients
CCE , CCU and CCI stated in the appendix (solid line) and for
aberration correction (AC) with CCE = 0 and instability levels
	I/I = 	U/U = 10−5 (dashed line) and 10−6 (dotted–dashed
line).

and virtual coordinates and parameters are discussed in the
appendix.

The aperture function, M(q), suppresses modes in the
Fourier transform above a sharp cutoff. For the virtual
aperture angle used in the calculation, αap = 4.15 mrad
(see the appendix), the cutoff is at qmax = 0.458 nm−1 (see
figure 4(a)). We know from textbook descriptions that the

complete reproduction of sharp features such as the amplitude
object step function in figure 3 by Fourier series requires
an infinite number of q-mode terms. The loss of high q
modes caused by the use of an aperture introduces broadening
and intensity fringes (figure 5(a)), with respective width and
spacing that scale with the inverse of the cutoff qmax. This is
the well-known diffraction effect that produces the diffraction
limit in resolution [6–8]. The effect for the phase object is more
profound (figure 5(e)). Namely, the aperture produces phase
contrast in the calculation. For the π -phase object, diffraction
fringes are arranged symmetrically about a core destructive
fringe that is located at the position of the phase jump in the
phase object step function (figure 3). Just as for the amplitude
object, the fringe spacing and core width scale with the inverse
of qmax. In the limit that αap and qmax go to infinity, the lateral
dimensions of the phase object features approach zero in the
image and phase contrast is lost. The same fundamental effect
is caused by the other factors that act as low pass filters and
suppress the high q modes in the calculation.

The real part of the wave aberration function (figure 4(a))
is equal to one for small values of q at the in-focus condition,
	z∗ = 0, but it oscillates rapidly at large values of q .
This oscillation produces additional intensity fringes that are
detrimental to image formation. The imaginary part exhibits
similar oscillations at large q , but is not important at small q for
the in-focus condition because it is zero. By making a proper
choice of the aperture that cuts off the wave aberration function
oscillations at large q , their influence can be avoided. This is
the case for the aperture cutoff and in-focus wave aberration
function that are indicated in figure 4(a). Consequently, the
appearance of image features that are produced by aperture
diffraction error only (figures 5(a) and (e)) are modified
only slightly by wave aberrations at the in-focus condition
(figures 5(b) and (f)). On the other hand, defocus shifts
the onset of the aberration function oscillations to smaller
q and, at the same time, effectively narrows the range at
small q over which the real part of the aberration function
is unity (figure 4(a)). This produces broader amplitude and
phase object features and increases fringe spacing in the image
(figures 5(b) and (f)), qualitatively similar to the effect of
reducing qmax.

The source extension function also suppresses large q
modes at the in-focus condition (figure 4(b)). For the set of
parameters used in our calculation, the small q modes that are
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Figure 5. (Color online) Calculated images of amplitude and π-phase objects (figure 3) are shown that are obtained using (a), (e) aperture
function M(q) only, (b), (f) aperture and wave aberration function (equation (7) and figure 4(a)), (c), (g) aperture, wave aberrations and source
extension function, Es (equation (9) and figure 4(b)), (d), (h) aperture, wave aberrations, source extension and chromatic aberration function,
Ec (equation (10) and figure 4(c)). The intensity profiles are shown for in-focus (	z∗ = 0, thick lines) and out-of-focus (	z∗ = 6, thin red
lines) conditions. The abscissa is the real object position.

passed without modification by the source extension function
fall in a range of q that is broader than the range of the
aperture and wave aberration function in-focus. Therefore,
the appearance of image features is unaltered when source
extension is included for the in-focus condition (figures 5(c)
and (g)). This will also be true for out-of-focus conditions
up to a point. That point is reached when the narrowing
effect of defocus on the source extension function begins to
exceed its narrowing of the wave aberration function. That
point has been passed for the defocus value that was used to
produce the defocus curves in figures 4(a) and (b). In this case,
fringe amplitudes are decreased and fringe spacing is increased
slightly in the out-of-focus condition when the effect of source
extension is included (figures 5(c) and (g)).

The chromatic aberration function also suppresses large q
modes, but the range of unmodified modes at small q is the
narrowest among the factors considered here for the in-focus
condition (figure 4(c)). This leads to the suppression of all
but the strongest fringes in the image. Chromatic aberrations
also have the dominant effect on the feature width at the
in-focus condition (figures 5(d) and (h)). This observation
is consistent with our understanding of the importance of
chromatic aberrations in defining cathode lens microscope
resolution [13]. The effect of chromatic aberrations on image
features is independent of the focus condition. Therefore, wave
aberrations and source extension exert a greater influence with
increasing defocus (figures 5(d) and (h)) and can eventually
overtake chromatic aberrations in determining feature size and
resolution.

3.2. Step phase contrast

Atomic steps are a very common defect at surfaces that have
been imaged very nicely using LEEM on many surfaces. The

step phase contrast mechanism has already been explored
using a wave-optical model [3, 4]. This revealed that a rich
interference phenomenon occurs at a step. The detrimental
effects of imperfect source characteristics on the ‘imaging’
wave were included as rigorously as possible in the limited
context of the wave-optical model. However, aberrations were
treated only in an ad hoc way by Gaussian convolution of
the wave amplitude, and diffraction error was not included at
all. It would therefore be interesting to make a comparison
between the results of the Fourier optics calculation, which
treats these influences more realistically, and the earlier wave-
optical model calculations of step phase contrast.

Figure 6 shows the phase shift and focus dependence
of phase contrast that are determined by the Fourier optics
calculation using the complete cross-coefficient (equation (8)).
These figures reproduce the key results of the wave-optical
model calculation of step contrast. In the out-of-phase
condition, φ = (2n + 1)π where n = integer, the Fourier
optics calculation produces equivalent intensity maxima that
are located symmetrically about a complete destructive inter-
ference fringe at the step position. In the in-phase condition,
φ = 2nπ , contrast is absent. Clearly asymmetric features
are observed at the intermediate phase conditions that are
most pronounced at φ = (2n + 1)π/2. We identify the
positive coordinate in figures 3 and 6 with the terrace on
the lower or down-side of a step. For φ = π/2 and
equivalent intermediate phase conditions (n = even), an
intensity maximum (minimum) is located on the down- (up-)
side of the step for positive defocus. For φ = 3π/2 and equiv-
alent conditions (n = odd), the asymmetry is reversed with an
intensity maximum (minimum) located on the up- (down-) side
of the step for positive defocus. The locations of the maxima
and minima also flip to the opposite sides of the step for
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Figure 6. (Color online) The phase shift dependence of phase contrast is shown for in-focus (	z∗ = 0, thick solid lines), underfocus
(	z∗ = 6, thin solid red lines) and overfocus (	z∗ = −6, thin dashed blue lines) conditions. For φ = π , positive and negative defocus
produce identical intensity profiles. For φ = 2π , the absence of contrast features is independent of focus condition. The abscissa is the real
object position.

these two intermediate phase conditions at negative defocus.
For the π out-of-phase condition, the symmetric features are
identical for positive and negative defocus and broadened
compared to in-focus. Such defocus broadening is generally
true for all phase conditions and is consistent with experimental
observations and the wave-optical model predictions [3, 4]. For
the 2π in-phase condition, however, the absence of contrast
is independent of the focus condition. According to our
convention, 	z = 	 f − 	a for 	 f and 	a shown in
figure 2(a), positive (negative) defocus corresponds to an
increase (decrease) of the focal length for 	a = 0. This
is achieved in the magnetic objective lens by decreasing
(increasing) the excitation of the objective lens current from
the value for the in-focus condition. Consequently, positive and
negative defocus are called under- and overfocus, respectively.
As pointed out earlier [3, 4], an understanding of asymmetric
step phase contrast features, coupled with knowledge of the
phase shift and defocus condition, can be put to practical use
to identify the step sense simply by visual inspection of the
images.

The Fourier optics calculation also reveals something
interesting that was not discussed before. In particular, it
indicates the presence of symmetric contrast features in-focus
for all phase conditions, excluding the φ = 2nπ in-phase
conditions, that resemble the φ = (2n + 1)π out-of-phase
form. The depth of the destructive intensity minima at the core
and the height of the bordering fringes decrease towards zero
as the phase is changed from the (2n + 1)π out-of-phase to
the 2nπ in-phase condition. This result is somewhat surprising
because it contradicts the common experimental observation
that step contrast vanishes at the in-focus condition for all
phase shifts. The cause of this discrepancy is not understood.

In terms of the Fourier optics formalism presented here,
there is nothing that can be adjusted that can suppress phase
contrast at the in-focus condition. Although the instability level
used in the calculation produces negligible effect on image
features (see section 3.3), greater instabilities should act in a
way that is very similar to energy spread because they both
come into the calculation through the chromatic aberration
function. Therefore, instabilities are unlikely to be responsible
for extinguishing in-focus step contrast. The source of the
discrepancy may lie elsewhere on the experimental side.

3.3. Resolution, aberration correction and further
applications

The instrument resolution that is defined by the width of the
amplitude object edge in focus is shown in figure 7. The
84%/16% criterion that is used to determine the resolution
is shown in the inset of this figure. The improvement of
resolution with increasing energy that is predicted by the
Fourier optics calculation is consistent with behavior that
was predicted already in the early years of LEEM [13].
The distance between the intensity maxima and the central
minimum that appear in the image of a π -phase object in focus
at 10 eV (figure 5(h)) is shown in figure 7 for comparison. The
phase object feature distance is approximately equivalent to the
resolution that would be determined from the amplitude object
using a less favorable 90%/10% criterion.

We find that the effect of instabilities of 	I/I =
	U/U = 10−5 on image formation is negligible compared to
chromatic and spherical aberrations for the typical instrumental
energy spread 	E = 0.5 eV and aberration coefficients used
here. However, in instruments that correct these aberrations,
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Figure 7. Instrumental resolution determined from the in-focus
amplitude object image profile using the 84%/16% condition (inset)
is shown with aberrations for	E = 0.5 eV (solid line) and without
aberrations (CCE = CS = 0) for instability levels of
	I/I = 	U/U = 10−5 (�) and 10−6 (	
). The separation of
π-phase object first-order maxima and central minimum in focus and
with aberrations is also shown (•). This corresponds to the Raleigh
criterion.

such that CS and CCE may be taken to be zero, it is
possible that instabilities are more important. The reduction of
instabilities by up to an order of magnitude is not only possible
but may even be necessary to achieve optimal resolution in
aberration-corrected instruments. Let us examine the effect
of CS and CCE correction on the Fourier optics calculation.
Since wave aberrations are absent in the calculation for this
correction in focus (CS and 	z are zero in R0), angular
confinement by the aperture is no longer necessary. Source
extension is also unimportant (since CS and 	z are zero in
Es). The chromatic aberration function, Ec, also only has
an effect on image formation through instabilities (CCE = 0,
CCU �= 0, CCI �= 0) and is correspondingly broader than
without aberration correction. This is shown in figure 4(c)
for instability levels of 10−5 and 10−6. Therefore, the
calculation for aberration correction is carried out with an
aperture that does not cut off the Ec function, or with no
aperture at all. The resolution that is determined from the
amplitude object image with aberration correction is indicated
in figure 7. This demonstrates that the improvement of
resolution that can be achieved with aberration correction
and by reducing instabilities within the context of the Fourier
optics calculation presented here is significant. It should be
noted, however, that the calculation considers the chromatic
and spherical aberrations of lowest order only. Therefore,
the resolution for aberration correction is determined only
by instabilities here. Not surprisingly, it is better than
what is determined for aberration-corrected instruments when
higher-order aberrations that are not corrected are taken into
account [14]. Nevertheless, attention to voltage and current
instabilities may still bring some practical benefit for achieving
the optimal resolution of aberration-corrected instruments.

Although Fourier optics has been discussed in the context
of LEEM, the formalism presented here can also be adapted
for describing image formation in another popular cathode
lens microscopy, photoemission electron microscopy (PEEM).

In PEEM, images are formed using photoelectrons that are
produced by illumination of the sample with light. The
different excitation source in PEEM eliminates the need
to consider source extension in the model calculation. In
LEEM, the emission of elastically backscattered electrons is
concentrated at the Bragg angles by diffraction. Selection of
a single diffraction spot on the optical axis with the contrast
aperture provides a sufficiently high signal for fast imaging
with low noise. In PEEM, however, photoelectrons are emitted
from the real object more uniformly over a broad range of
angles than in LEEM. Nevertheless, the emission angles from
the virtual object are sufficiently small in the UV and near-
XUV range so that the paraxial ray approximation remains
valid. From the viewpoint of improving transmission and
signal intensity in PEEM, it is common practice to use a larger
aperture angle. In the calculation, this is accomplished by
using an aperture function M(q) (equation (3)) that passes
a larger range of spatial frequencies. Although this reduces
or eliminates the diffraction error, it enhances the effect of
wave aberrations (equations (4) and (7)). The use of a
larger energy window, 	E , to increase transmission also
has the drawback of enhancing chromatic aberrations through
the function Ec (equation (10)). Higher-order spherical
and chromatic aberrations that were not considered here
also become important under these conditions of higher
transmission [14].

4. Conclusion

Fourier optics allows us to describe image formation in cathode
lens electron microscopy in a comprehensive manner by
taking into account the lowest order spherical and chromatic
aberrations of the objective lens, diffraction at the aperture,
energy spread and size of the electron source in LEEM as
well as instabilities of the lens current and the high voltage.
This has been illustrated for two limiting contrast mechanisms
in LEEM, pure phase contrast and pure amplitude contrast.
The calculations clearly show the influence of the various
factors that determine the intensity distribution in the image
and the dominating effect of the chromatic aberration that
was predicted already in the early years of LEEM. Aberration
correction improves the resolution to 1 nm but a resolution
of 1 Å will require not only correction of higher-order
aberrations but also extreme electrical and mechanical stability.
With amplitude contrast a resolution of a few nm should be
achievable, using a field emission electron source, already
without aberration correction, in particular at higher energies.

Appendix. Parameters for LEEM

Section 2 describes the formation of an image of the virtual
object. We describe here how the virtual object parameters and
coordinates referred to in section 2 are related to those of the
real object in LEEM. The values of the parameters that are used
to produce the results in section 3 are also presented in this
appendix. First, we define the immersion factor κ = U/U0,
where U0 is the emitted electron energy at the sample before
acceleration and U is the kinetic energy after acceleration to
the microscope potential. The ratio of the wavelengths at the
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real and virtual object planes, λ0 and λ, respectively, is given
accordingly by λ/λ0 = κ−1/2. The relationships between the
real (x0, θ0) and virtual (x, θ ) spatial and angular coordinates
are x/x0 = ML and θ/θ0 = MA, respectively, where ML is
the lateral magnification and MA is the angular magnification.
Because of the inverse relationship between spatial coordinate,
x , and spatial frequency, q , expressed as q = θ/λ ∼ 1/x , the
spatial frequencies associated with the virtual, q , and real, q0,
objects are related according to q = q0/ML. Furthermore, it is
straightforward to show that ML and MA are related by

MA = (κ1/2ML)
−1. (A.1)

The virtual aperture and illumination angles are also expressed
in terms of the corresponding real object angles as αap =
αap0 MA and αill = αill0 MA, respectively.

In order to find the relationship between real and virtual
spherical aberration coefficients, it is helpful to change
variables in the expression for the phase shift due to wave
aberrations (equations (4))

W (θ∗,	z∗) = θ∗4

4
− θ∗2

2
	z∗,

where θ∗ = qλ(CS/λ)
1/4 and 	z∗ = 	z(CSλ)

−1/2. Since
image features and contrast should have the same appearance
regardless of whether we perform the calculations using real or
virtual coordinates/parameters, the quantities θ∗ and 	z∗ must
be invariant under such a coordinate transformation. Thus,
we can write the equalities θ∗ = θ∗

0 and 	z∗ = 	z∗
0,

where the ‘0’-subscripted variables, θ∗
0 = q0λ0(CS0/λ0)

1/4 and
	z∗

0 = 	z0(CS0λ0)
−1/2, and the parameters contained within

are associated with the real object. From these equalities, we
derive the desired relationships:

	z

	z0
= κ1/2M2

L, (A.2a)

CS

CS0
= κ3/2 M4

L. (A.2b)

The relationships between the real and virtual chromatic
aberration coefficients are found by applying a similar
coordinate transformation to the widths of the Gaussian
defocus distributions (of the form of equations (5)) that
are produced individually by energy spread (	 fCE =
CCE (	E/E)), voltage (	 fCU = CCU (	U/U )) and
current (	 fCI = CCI (	I/I )) instabilities, and by noting
that the defocus distribution must be invariant under these
transformations. This means that the equalities 	zc/	 fCE =
	zc0/	 fCE0, 	zc/	 fCU = 	zc0/	 fCU0, and 	zc/	 fCI =
	zc0/	 fCI0 must hold, where the ‘0’ subscripts again refer to
the real object. From these equalities and equation (A.2), we
obtain the relationships

CCE

CCE0
= CCU

CCU0
= CCI

CCI0
= κ3/2 M2

L. (A.3)

Note that, in order to derive equation (A.3), we have used E =
U0 in 	 fCE0 = CCE0 (	E/E) for the real object and E = U
in 	 fCE = CCE (	E/E) for the virtual object, while 	E

Table A.1. Real object parameters calculated in [15] for U = 18 kV
and U0 = 10 eV and the virtual parameters for the magnetic
objective lens.

Real object parameters Virtual object parameters

αap0 1.15 × 10−1 rad αap 4.15 × 10−3 rad
αill0 6.93 × 10−3 rad αill 0.25 × 10−3 rad
CS0 4.03 × 10−6 m CS 55.8 × 10−3 m
CCE0 1.84 × 10−6 m CCE 59.8 × 10−3 m
CCU0 2.25 × 10−7 m CCU 7.33 × 10−3 m
CCI 0 4.60 × 10−7 m CCI 15.0 × 10−3 m
U0 10 eV U 18 keV
λ0 3.878 Å λ 9.141 × 10−2 Å

is the same for both and taken to be 0.5 eV in the evaluation
described in section 3. Instabilities of	U/U = 	I/I = 10−5

are also assumed for the calculation.
The real object parameters, from which we derive the

virtual object parameters by the preceding relations, have been
calculated by Adamec for a magnetic objective lens that is
similar to those that are currently in wide use [15]. For U0 =
10 eV (λ0 = 3.878 Å) and U = 18 keV (λ = 9.141×10−2 Å),
the magnification factors were calculated to be ML = 0.653
and MA = 3.61 × 10−2 [15]. For the same values of U
and U0, the real object parameters shown in table A.1 were
determined. These parameters were used to derive the virtual
object parameters, also listed in table A.1, by the preceding
relations.

In order to model image formation at other emission
energies, U0, we must understand how the key parameters
depend upon energy. The total image magnification is a
product of ML and the magnification that is produced by
the electron optics, M0 (see equation (2)). The very weak
dependence of total image magnification upon emission energy
which is observed experimentally demonstrates the near-
invariance of ML. Therefore, we take the lateral magnification
factor to be constant and equal to the value calculated by
Adamec [15]. It follows that the energy dependence of the
aperture, αap, and illumination, αill, angles is given only by
the explicit κ dependence in equation (A.1). The energy
dependence of the virtual aberration coefficients, CS, CCE ,
CCU and CCI , arises firstly from the explicit κ dependence
in equations (A.2b) and (A.3) and secondly from the energy
dependence of the real aberration coefficients themselves. It
has been shown that the spherical and chromatic aberration
coefficients for the homogeneous electric field produced by a
planar electrode with on-axis pinhole opening (which mimics
the hole in real objective lenses) are, to a good approximation,
given by CS0 = CCE0 = l/κ in the limit of large κ ,
where l is the distance between sample and electrode [16].
Similar scaling relationships should also hold for the magnetic
objective, which combines a focusing magnetic field with an
electrode that approximates the homogeneous field. Therefore,
we write CS0 = leff,S/κ and CCE0 = leff,C/κ , where the leff

are the effective distances in the magnetic objective lens. The
effective lengths leff,S = 7.2 mm and leff,C = 3.3 mm are
determined from the calculated values of the real aberration
coefficients CS0 and CCE0 in table A.1 and κ = 5.55 ×
10−4 at U0 = 10 eV and U = 18 keV. The difference
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between the effective lengths may be related to the facts
that the focusing magnetic field is located further than the
electrode from the sample in the magnetic lens, and that
these two lens elements contribute differently to the aberration
coefficients. Apparently, the magnetic field contributes more
to spherical aberrations than to chromatic. This is consistent
with the stronger energy dependence of the spherical aberration
contribution to resolution in a magnetic objective compared
to the homogeneous field [17]. The model calculations that
are presented in section 3 for U0 = 10 eV confirm that
the effects of voltage and current instabilities are negligible
compared to the other factors, as expected by microscope
design considerations.
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